§4 Associativity from commutativity.

The Nucleus=Center Theorem says that in nice algebras which aren't associative, anything that associates with A also commutes with A. Conversely, commutativity goes a long way towards implying associativity: in characteristic ≠ 3 situations, anything which commutes with A also associates with A. Characteristic 3 is the bad characteristic for alternative algebras; in this section the coefficient 3 will crop up in lots of unwanted places (recall also 2.1).

4.1 (Commutativity-Implies-Associativity Lemma). If z commutes with A then 3z and z^3 lie in the center of A, and $[x,y,z]^2 = 0$ for all x,y. If A has no nilpotent elements, or if 3 is injective or surjective, then any element which commutes with A lies in the center.

Proof. If z commutes with everything so does 3z, and moreover 3z associates with everything by the first of

- (4.2) 3[x,y,z] = [xy,z] x[y,z] [x,z]y (Associator -
- (4.3) 3[x,y,z] = [xy,z] + [yz,x] + [zx,y]. Commutator Formulas)

These are just formulas (2.8) and (2.9).

By Artin's Theorem, if z commutes with all x so does z^3 , and z^3 associates since $[z^3,x,y]=(z^3x)y-z^3(xy)=\{z(zx)z\}y-z\{z^2(xy)\}=z\{(zx)(zy)-z_1(z(xy))\}$ (left Moufang) = $z\{(zx)(yz)-z(xy)z\}=0$ (middle Moufang).

For $[x,y,z]^2 = 0$ we need [z,y, [z,a,y]] = 0

for all a,y \in A . This follows from $(zy)[z,a,y] = (zy)\{(za)y\} - (zy)\{z(ay)\} = \{yz\}\{(za)y\} - \{zy\}\{(ay)z\} = U_y | z(za) - U_z | y(ay)$ (middle Moufang) and $z\{y[z,a,y]\} = z[y,z,ay]$ (left bumping) $= -z[y,ay,z] = -z\{[(ya)y]z\} - y[(ay)z]\} = -U_z | (yay) + z\{y[z(ay)]\} = -U_z | y(ay) + (zyz)| (ay) | (left Moufang) = -U_z | y(ay) + U_y | z^2a|.$ Setting $a = x^2$ gives $0 = [z,y,[z,y,x^2]] = [z,y,x \circ [z,y,x]]$ (middle bumping) = $x_z[z,y,[z,y,x]] + [z,y,x] \circ [z,y,x]$ (linearized middle bumping) = $0 + 2[z,y,x]^2$; since already $3[z,y,x]^2 = 0$ from 3[z,y,x] = 0, we see $[z,y,x]^2 = 0$.

If A has no nilpotent elements then $[z,y,x]^2 = 0$ implies [z,y,x] = 0, and z is nuclear and so central. Similarly, if 3 is injective 3[z,y,x] = 0 implies [z,y,x] = 0 and z is central. If 3 is surjective, 3A = A, then [z,A,A] = 3[z,A,A] = 0 again implies z is central.

4.4 Corollary. A commutative alternative division algebra is a (commutative, associative) field.

The Corollary has a geometric significance. Commutativity of the coordinate ring of a plane corresponds to Pappus' Theorem,

associativity to Desargues' Theorem. The Corollary says that Pappus implies Desargues (a result which can also be proven geometrically; see Appendix V).

The Corollary actually holds for simple algebras, but the proof at one point relies on results about polynomal identities; it would be nice to have an elementary proof.

When not just z but all of A commutes, it is relatively easy to show $[x,y,z]^3 = 0$: writing [x,y,z] = u - v for u = (xy)z, v = x(yz) we have $[x,y,z]^3 = (u - v)^3$. $= u^3 - v^3 - 3uv(u - v)$ by Artin's Theorem since $\Phi[u,v]$ is commutative associative; but 3(u - v) = 3[x,y,z] = 0, and using Artin's Theorem twice $u^3 = \{(xy)z\}^3 = (xy)^3z^3 = (x^3y^3)z^3$, $v^3 = x^3(y^3z^3)$, so also $u^3 - v^3 = [x^3,y^3,z^3] = 0$. Thus $[x,y,z]^3 = 0$.

We give examples to show that in characteristic 3 commutativity is not enough to imply associativity.

4.5 Example. We construct a commutative alternative algebra, of dimension 6 over any ring of characteristic 3, which is not associative. It has multiplication table

02	x ₁	. ×2	.×3.	×4	× ₅	, ^x 6
×ı	0	× ₄	0	0	.**6	0
^x 2 -	×4	0	× ₅	0	0	0
⁴ 3	0	× ₅	0	-× ₆ .	. 0	. 0
4	0	0	-×6.	0	0	0
⁵ 5	×6	0	0	0	0	0
⁶ 6	0	0	0	0	0	0

By symmetry of the table, A is commutative. Therefore we need only check left alternativity. Since for $i \geq 4$ Ax₁ + x₁ A C Φ x₆ and Ax₆ = x₆A = 0 , [A,A,x₁] = [A,x₁,A] = [x₁,A,A] = 0 trivially for $i \geq 4$. Thus we need only consider associators involving only x_1,x_2,x_3 . Again $[x_1,x_1,A] = 0$ is trivial since $x_1^2 = 0$ and $x_1(x_1,A) = 0$. Thus we need only [x,y,z] + [y,x,z] = 0 for x,y,z basis elements $x_1(1 \leq i \leq 3)$. Here $[x_1,x_2,x_3] + [x_2,x_1,x_3] = 2x_4x_3 - x_1x_3 = -3x_6 = 0$ in characteristic 3, $[x_1,x_3,x_2] + [x_3,x_1,x_2] = -x_1x_5 - x_3x_4 = -x_6 + x_6 = 0$, $[x_2,x_3,x_1] + [x_3,x_2,x_1] = 2x_5x_1 = x_3x_4 = 3x_6 = 0$ because of characteristic 3 again.

Thus A is alternative. However, it is not associative since $[x_1,x_2,x_3]=x_4x_3-x_1x_5=-x_6-x_6=-2x_6\neq 0 \ .$

A is nilpotent, $A^4=0$, but the intersection of all nonzero ideals (the "heart" of A) turns out to be Φx_6 . \square

4.6 Example. Let $\Phi[x,y,z]$ be the free alternative algebra on 3 generators over a field Φ of characteristic 3, and $A = \Phi[x,y,z]/K$ for K the ideal generated by [x,y],[y,z],[z,x]. In characteristic 3, (4.2) shows any a + [a,b] is a derivation; thus if the commutators of degree 2 in the generators vanish, all commutators vanish since they can be broken down into degree 2 commutators, and A is commutative. It is not associative since $[x,y,z] \not\subset K$, [x,y,z], cannot be generated by [x,y], [y,z], [z,x] . Indeed, if it could then by considering degrees in x,y,z there would have to be a relation $\alpha_1 z[x,y] + \beta_1[x,y]z + \alpha_2 x[y,z] + \beta_2[y,z]x + \alpha_3y[z,x]$ $+\beta_{3}[z,x]y = [x,y,z]$ back in $\phi[x,y,z]$. But then the same would hold in the free associative algebra. Expanding the commutators out, the coefficients of xyz,xzy,yzx,yxz,zxy,zyx are respectively $\beta_1 + \alpha_2$, $-\alpha_2 - \beta_3$, $\beta_2 + \alpha_3$, $-\alpha_3 - \beta_1$, $\alpha_1 + \beta_3$, $-\alpha_1 - \beta_2$; these all must vanish ([x,y,z] = 0 in the free associative algebra), $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$, $\beta_1 = \beta_2 = \beta_3 = -\alpha$. Going back to the free alternative, we must have $[x,y,z] = \alpha\{[z,[x,y]] + [x'_1[y,z]]$ + [y,[z,x]] = $6\alpha[x,y,z]$ = 0 in characteristic 3, whereas $[x,y,z] \neq 0$ in $\Phi[x,y,z]$. (We have an opimorphism onto the Cayley algebra via x + $e_{12}^{(1)}$, y + $e_{12}^{(2)}$, z + $e_{12}^{(3)}$, [x,y,z] + e_{22} - $e_{11} \neq 0$). Thus $[x,y,z] \notin K$ and $[x,y,z] \neq 0$ in A :

We can modify this to give an example promised earlier of an isotope which is not isomorphic.

4.7 Example. Set $A' = \Phi[x,y,z]/K'$ where K' is generated by K and z^3 (so we take the commutative alternative algebra A and divide out by the relation $\overline{z}^3 = 0$). This new A' inherits commutativity, and by degree considerations [x,y,z] still isn't in $K'(i.e.[\overline{x},\overline{y},\overline{z}] \neq 0$ in A'). Since \overline{z} has been rendered nilpotent, $\overline{u} = 1 + \overline{z}$ has been rendered invertible. We claim the isotope $A^{(u,1)}$ is not even commutative, so can't possibly be isomorphic to A: we have $[\overline{x},\overline{y}]^{(u,1)} = \overline{x}_{u,1} \ \overline{y} - \overline{y}_{u,1} \ \overline{x} = (\overline{x}\overline{u})\overline{y} - (\overline{y}\overline{u})\overline{x} = (\overline{x}\overline{u})\overline{y} - \overline{x}(\overline{u}\overline{y})$ (commutativity of A) = $[\overline{x},1-\overline{z},\overline{y}] = -[\overline{x},\overline{z},\overline{y}] \neq 0$.

#5. Problem Set on Casimir Operators

- 1. If (ℓ,τ) is a birepresentation of an alternative algebra A on a finite-dimensional bimodule M over a field φ , show the <u>left trace</u> form $\tau_{\hat{\ell}}(x) = \operatorname{tr} \ell_x$ satisfies $\tau(xy) = \operatorname{tr} \ell_x \ell_y = \operatorname{tr} \ell_y \ell_x = \tau(yx)$ and $\tau((xy)z) = \tau(x(yz))$, so $\tau(x,y) = \tau(yx)$ defines a symmetric, associative bilinear form on A. Show $\tau(z) = 0$ if z is nilpotent and $\tau(\varepsilon) = \dim_{\varphi} \operatorname{cM}$ if e is idempotent.
- 3. The <u>Centroid I(M)</u> of a bimodule M is the set of all linear transformations on M which commute with all L_X , R_X for $x \in A$ (i.e. with M(A[M))). Show any \widetilde{T} on $E = A \oplus M$ which leaves M invariant and commutes with $M_{\mathbb{R}}(A)$ restricts to an element $T = \widetilde{T} \big|_{M}$ in $\Gamma(M)$.
- 4. If M is irreducible, show T(M) is a division algebra.
- 5. If (ℓ,r) is a birepresentation of a finite-dimensional algebra A over a field ϕ on a finite-dimensional bimodule M with nondegenerate trace form $\tau = \tau_\ell$, show ℓ is faithful; if $\{x_i\}$, $\{x_i^*\}$ are dual basis for A relative to τ , show the <u>left Casimir operator</u> $C_\ell = \ell$ ℓ χ_i^* belongs to the centroid $\Gamma(M)$. Show the $C_\ell = n = \dim A$, so if the characteristic $\neq 0$ then $C_\ell \neq 0$ and C_ℓ is invertible if M is irreducible.

Unfortunately, the Casimir operator doesn't seem to lead (as it does in the associative or Lie case) to a proof that the cohomology groups of a separable algebra are zero.